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The present monte carlo simulation study was designed

to examine the effects of multidimensionality during the
administration of computerized adaptive testing (CAT). It was assumed
that multidimensionality existed in the individuvals to whom test
items were being administered, i.e., that the correct or incorrect
responses given by an individual were generated from a specified
multidimensional structure, rather than the unidimensional item
response theory (IRT) model normally assumed to have generated the
observable dichotomous test item responses. The dichotomous response
was then treated for CAT item selection and ability estimation
purposes as if it had been generated by the unidimensional model. To
the extent that the observed item response was affected by dimensions
other than the f£irst (which corresponded to the single dimension
assumed to underlie the item selection and ability estimation
process) errors should be introduced into the adaptive testing
process. These errors should affect the ability estimates and the
efficiency of CAT. The study focused on the naiure and degree of
these errors under a variety of multidimensional structures, to
determine how robust CAT is to the effects of multidimensionality in
examinees' responses to test items. (PN)
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Before computerized adaptive testing (CAT) can be applied in various opera-
tional settings, its characteristics must be evaluated under a varilety of condi-
tions. Studies of the reliability and validity of CAT (e. g., Johnson & Weiss,
1980; Kiely, Zara, & Welss, 1983; McBride & Martin, 1983; Moreno, Wetzel,
McBride & Welss, 1984; Sympson, Weiss, & Ree, 1982) provide important informa-
tion comparing CAT to conventional tests in applied situations. Live-testing
studies such as these, towever, are expensive and time-consuming, provide re-
sults that are dependent on the characteristics of the sample of subjects and
the specific criterion variables used, and do not permit an answer to the impor-
tant questions about how well CAT measures true ability levels and whether abil-
ity 1s better estimated at different ability levels. Live-te~ting studies also
incorporate a number of uncontrolled sources of error (e. g., item parameter
estimation error, various errcrs of measurement due to idiosyncratic character-
istics of examinee responses to test items) which further complicate the process
of reaching generalizable conclusions.

Monte carlo simulation provides a means of systematically examining the
performance of CAT under a varilety of conditions and of identifying the effects
of various kinds of errors on the performance of CAT strateg.es. Early studies
were concerned with the comparison of CAT item selection strategies with conven-
tional tests {e.g., Betz & Welss, 1973, 1974, 1975; Larkin & Welss, 1974; Vale &
Weiss, 1975a, 1975b) and with each other (e.g., Larkin & Weilss, 1975). These
studies provided global evaluations of CAT strategies that were useful in elimi-
nating some strategies from further consideration. Later studies then concen~
trated on the more promising strategies, generally those that are based on item
response theory (IRT), examining the performance of these testing strategies

conditional on true ability levels (e.g., McBride, 1977; Vale, 1975; Weiss &
McBride, 1984).

One factor that can affect the performance of CAT is the nature of the item
pool from which it draws items. McBride (1977; Weiss & McBride, 1984) studied
the performance of a Bayesian CAT in perfect and ideal item pools and in realis-
tic item pools in which the IRT diffficulty and discrimination parameters were

correlated. Others (e.g.; Urry, 1974) also examined CAT performance in a
variety of item pool configurations.

In addition to the distributions of item difficulties and discriminations
in a given item pool, the degree of error in the IRT item parameter estimates in
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a real item pool can affect the performance of CAT, particularly since items are
selected on the bagis of their IRT parameter estimates. Crichton (1981) inves-
tigated the effects of errors in item parameter estimates on the performance of
maximum information and Bayesian CAT strategies in the context of the 3-parame-
ter logistic model. Mattson (1983) extended Crichton's study to the l- and
2-parameter logistic models, both Bayesian and maximum likelihood scoring, and
to the more realistic sitvation in which the IRT difficulty and discrimiaation
parameters had varying degrees of correlation. These later studies provide val-~
uable information about the performance of CAT under the realistic situation in
which adaptive testing is to be done using item pools with parameters estimated
with varying degrees of error.

A second factor that is likely to have an effect on the performance of IRT-
based CAT 1s multidimensionality. Operational IRT models used for CAT assume
that unidimensionality exists at two stages: (1) in the process of estimating
item parameters, and (2) in the process by which an individual generates a re-
snonse to a test item with given item parameters. Presumably, any deviations
from unidimensionality that exist at either of those stages in CAT could result
in non-optimal performance of IRT-based CAT strategies.

While many tests of ability and achievement approximate unidimensionality,
none have shown the strict unidimensionality required by operational IRT models.
This motivated Drasgow and Parsons (1983) to examine the effects of deviations
from unidimensionality during the item parameter estimation process on IRT item
parameter estimates.

Purpose

The present monte carlo simulation study was designed to examine the
effects of multidimensionality during CAT test administration. It was assumed
tha: multidimensionality existed in the individuals to whom test items were be-
ing administered--i.e., that the correct or incorrect responses given by an in-
dividual were generated from a specified multidimensional structure, rather than
the unidimensional IRT model normally assumed to have generated the observable
dichotomous test item responses. The dichotomous response was then treated for
CAT item selection and ability estimation purposes as if it had been generated
by the unidimensional model. To the extent that the observed item response was
affected by dimensions other than the first (which corresponded to the single
dimension assumed to underlie the item selection and ability estimation process)
errors should be introduced into the adaptive testing process. These errors
should affect the ability estimates and the efficiency of CAT. The study fo-
cused on the nature and degree of these errors under a variety of multidimen-
sional structures, to determine how robust CAT 1s to the effects of multidimen-—
sionality in examinees' responses to test items.

METHOD

Initial Factor Analyses

Item response vectors for forms 8A and 8B of the Armed Services Vocational
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Aptitude Battery (ASVAB) were obtained for a sample of military recruits. For
those subtests of the ASVAB (Mathematics Knowledge, General Sclence and Mechani~-
cal Comprehension) in which forms 8A and 8b were identical except for the order
of the items, the response vectors for form 8B were rearranged to match the or-
der of the items in form 8A. This resulted in datasets with sample sizes of
5,127 for these three subtests, sample sizes of 2,621 for form 8A of the other

seven subtests, and sample sizes of 2,506 for form 8B of the other seven sub-
tests.

Tetrachoric inter-item correlations were computed for eight of the ten sub-
tests; the Numerical Operations and Coding Speed subtests were not included in
further analyses due to the speeded nature of these subtests. The tetrachoric
correlations for the other eight subteste were then factor-analyzed using a
principal axes factor extraction method and a Varimax rotation. Of the result-
ing factor structures, the factor structure of the General Science subtest ex-
hibited the greatest degree of multidimensionality. Table 1 lists the factor
loadings on the first four factors for the items in this subtest. This factor
structure was used as the model for generating subsequent factor structures with
varying degrees of multidimensionality.

Generation of Factor Structures

The first step in creating factor structures with varyiag degrees of multi-
dimensionality was to round the 2% factor loadings on the first factor of the
AlVAB General Science {GS) subtest to the nearest multiple of .05. This set of
25 rounded factor loadings was then repeated six times to create a set of factor
loadings for 150 items on one factor with the same configuration of loadings as
the first factor for the ASVAB GS subtest. This factor, the original strength
ASVAB factor (OSAF), was used as the basis for one of three sets of factor
structures.

Sixteen factor structures of varying dimensionality were constructed using
OSAF as the first factor. Factors other than the first factor were constructed
to be proportional in strength to the first factor. These sixteen factor struc-
tures are described in Table 2. Factor structures varied from a 2-factor struc~
ture with the second factor 1/8 as strong as the first factor (Dataset 2) to a
3-factor structure with Factors 2 and 3 equal in strength to Factor 1 (Dataset
16). An additional dataset (17) consisted of the actual 4-factor ASVAB GS fac-
tor solution.

The 150 factor loadings on OSAF were then increased to yleld a first factor
that was approximately 1.5 times as strong as OSAF. This new first factor (l.5
OSAF) was used as the first factor in a set of sixteen different factor struc-
tures which are also described in Table 2 (Datasets 18-33)., Factors other than
the first factor in Datasets 18-32 were again constructed to be proportional to
this strengthened first factor in all of the factor structures except the 4-fac-
tor structure {Dataset 33), where the second, third and fourth factors were the
actual second, third, and fourth factors from the original factor analysis of
the ASVAB GS subtest (see Table 1).

The 150 factor loadings on OSAF were then increased a second time to result
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Table 1

Factor Loadings for the First Four Factors of the ASVAB
General Scilence Subtest

Item
Number Factor 1 Factor 2 Factor 3 Factor 4

1 «540 -.215 -.250 . 027
2 624 ~-.205 -.018 -.303
3 .642 -.201 -, 095 . 026
4 486 -.098 ~-.118 ~.115
5 .668 -.233 .162 . 069
6 .703 ~-. 160 .066 .073
7 .572 .052 .103 -.019
8 .493 ~.070 .072 ~.067
9 «546 - 174 -.239 .119
10 547 -.212 -,015 .016
11 .595 .060 .009 -.025
12 .398 .099 .058 -.006
13 .580 .096 ~.120 -.233
14 .580 -, 172 ~.069 .124
15 .438 -.029 .043 .337
16 . 543 .012 . 100 .172
17 462 .120 -.030 -.009
18 .639 0227 054 -.072
19 .371 .208 .045 -.011
20 473 .048 .132 -.096
21 460 .273 .085 . 006
22 .283 . 224 .115 -.032
23 «480 .035 . 147 -.062
24 .387 «650 -.310 .067
25 .396 .310 .101 .089

Factor
Contribution 7.541 1.671 1.030 1.023

in a first factor that was approximately twice as strong as 0SAF. This
~+rengthened first factor (2.0 OSAF) was used as the first factor in a third set
of twelve factor structures (Datasets 34-45), which are also described in Table
2. In Datasets 34~-44, factors other than the first factor were constructed to
be proportional in strength to this increased strength first factor; these addi-
tional factors were also constructed to avoid communalities greater than 1.0 for
any item. For the 4-~factor structure of Dataset 45, the factors other than the
first factor were taken directly from the original factor analysis of the ASVAB
GS subtest (see Table 1).

Generation of Response Vectors

To evaluate the effect of violation of the assumption of unidimensionality
in adaptive testing, sets of dichotomous (0,1) item responses were generated
using the factor structures with varying degrees of multidimensionality.




Table 2
Dataset Nunmbers for Datisets Based on
First Factors of 1.0, 1.5, and 2.0 OSAF,
and Factor Strengths of Fartors 2 through 4,
for Each of the Datasets

Factor Strength as a
Dataset Number Proportion of Factor 1
1.0 1.5 2.0 Factor Factor Factor
0SAF QSAF OSAF 2

18 34 -

19 35 1/8

20 36 1/4

21 37 1/3

22 38 1/2

23 39 2/3

24 40 3/4

25 - 1.0 -
26 41 1/8 1/8
10 27 42 1/4 1/4
11 28 43 1/3 1/3
12 29 b4 1/2 1/4
13 30 1/2 1/2
14 31 2/3 1/3
15 32 2/3 2/3
16 - 1.0 1.0
17 33 45 GS-2*  GS-3*  GS-4*

Lo~NoOWwm &N -

*Factor derived from factor analysis of
ASVAB GS test.

The first step was to assign 6 levels for each factor to a number of hypo-
thetical examinees (simulees). This was done for each factor except the first
factor by using a random number generator to create uniform distributions of
1,700 6 values between -3.2 and +3.2 for each factor independently of all other
factors. 0 levels for the first factor were assigned so that 100 simulees were
assigned to each of 17 6 levels ranging from -=3.2 to +3.2 in increments of .4.

6 levels for the first factor were assigned in this manner in order to have a
sufficient number of replications at each 6 level so that indices conditional on
6 could be computed.

Next, matrices of item response theory (IRT) item parameters were calculat—
ed ind generated. Item discrimination parameters (as) were computed using the
following formula:

. - 2 ks
agy = Fgy/[1 - (Fp] [1)

where a_. = item discrimination parameter for item g and factor j, and

gJ
ng = factor loading for item g on factor j.




These matrices of a parameters were calculated for each of the 45 factor struc-
tures.

Matrices of item difficulty parameters (bs) were generated for each of the
45 factor structures using a random number generator which generated a uniform
distribution of 150 values between -3.2 and +3.2 independently for each factor
in a given factor structure. Item pseudo-guessing parameters (cs) were also
generated for each factor in the 45 factor structures; they were generated to
yleld a normal distribution of 150 values with a mean of .20 and a standard de-
viation of .02 for each factor.

After the item parameter matrices for each factor structure were deter-~
mined, the probability of a correct response to each item for each factor was
computed for each of the 1,700 simulees using the three-parameter logistic mod-
el,

Q - cgj)
P, .(8,) =c¢c .+ (2]
1gj "] Bl 1 4 exp[-1.7a (8, - b
exp(-1.7ag; (05 = bgy)]
where Pig1(ej) = probability of a correct response to item g on factor j for a
- simulee with trait level ej,
cgj = IRT pseudo-guessing parameter for item g on factor I
3gy = IRT discrimination parameter for item g on factor j, and
bgj = IRT difficulty parameter for item g on factor j.

The probabilities for each item on each factor were then combined using
Equatfon 3 to calculate the overall probability of a correct response for each
individual on each item:

K
2

T F P

j=1 g igj

rig = " {31

2

I F

j=1 8]

where rig = gverall probability of a correct response for simulee 1 on item g,
ng = factor loading for item g on factor j, and
Pigj = probability of a correct response for simulee i on factor j for item
g
Dichotomous item scores (uig) were then generated using Tig and a random

number generator. For each simulee and item, a random number between O and 1
was generated. If Tig Was greater than this random number, an item score Uig =

1 was assigned for the response of simulee i to item g. If Tyg was less than

the random number, an item score uig = 0 was assigned to the item for the simu-




lee. In this manner, each of the 1,700 simulees received an item score of O or
1 on each of :he 150 items for each factor structures

Adaptive Testing Strategy

R
J

The sets of dichotomous item responses Uig generated from the factor struc-

tures with varying degrees of multidimensionality were used with a maximem in-
formation adaptive testing strategy to obtain 6 estimates. Since the adaptive
testing strategy used assumes a unidimensional set of item responses, the ob=

tained € estimates can be used to determine the effect of violation of the as-
sumption of unidimensionality. For each factor structure:

l. @ was set to 0.0 for each simulee.

2. Information at & was computed for each of the 150 items using first factor
a, b, and ¢ parameters in the following equativn:

. R
1,(8 = [Pg(e)] 1P, (8)Q, (8) (4]

where I (é) = information at § for item g,
P (8) probability of a correct response to item g at 6,
P'(e) = first derivative of P (8), and
Q (9) - P (6)

3. The item with the highest level of information at 8 was selected as the next
item to be administered.

4. The item responses to the item chosen to be administered were read from the
generated item response matrix for each simulee.

5. A new 8 was calculated for each simulee using maximum likelihood scoring:

K " . 1=
L(® )y =1 Pig(ei)“ig Qig(ei) g (5]

lu
DA S
where L(eillui) = likelihood of the simulee's observed response pattern (u )
at ©
i1°

P, (§,) = probability of a correct response to item g for simulee 1

i
R with trait level estimate 61,

Ugp = l for a correct response to item g,
. =0 for an incorrect response to item g,
Qig(ei) =] - Pig(ei)’ and
K = the number of items administered.
The value of 8 which had the greatest likelihood for the observed item re-

sponses was selected as the new 6 estimate for a simulee (6 was restricted
to the range +4 to ~4).




6. Steps 2 through 5 were repeated using the new 8s for each simulee until 30
items were administered;

7. The Os were saved at 5, 10, 15, 20, 15 and 30 items.

Evaluative Indices

Conditional indices. Since no one optimal evaluative index was available,
four different evaluative indices were used to determine the effect of viola-
tions of the assumption of wmidimensionality in adaptive testing. Each of the
following four indices were computed at each of the 17 8 levels on the first
factor and for all six test lengths.

1. Bias:
NG ) .
p PU@, - ey)
Blas(o_) = =1 (6]
P N )

~

, = estimated & level for simulee i,
8 . = true 6 level for simulee i on factor 1, and

pl
N(epl) = number of simulees at level 2_(usually 100, but occasionally smal-
ler due to maximum likelihood convargence failures).
This index takes into account both the size and direction of the difference be-
tween true and estimated 8.

2. Inaccuracy:

N(® .)
pl

LA PRL -
NG _,)

i

Inaccuracy(fp;) =
pl

Inaccuracy considers only the size, and not the direction, of the difference
between estimated and actual 8 levels for each simulee at a given 8 level
and test length.

3. Root Mean Square Error (KMSE). RMSE was calculated as

RMSE(GI-,I) = (8]

This index gives more weight to larger differences between estimated and
true 6 levels.

4, Efficlency. Efficlency was defined by




K

I Ix(0)

g=1 &
I(ey) = " [°]
LI (")
g=1 B

where g* indexes items actually administered and g indexes the items with
the maximum levels of information at 6.

Thus, efficiency is the ratio of the information in the k items actually
administered to the k most informative items at 6;. It will equal 1.0 when
the adaptive testing strategy administers the k items with maximum informa-
tion at 8;. Deviations from 1.0 result from the fact that, at any stage of
the adaptive test, 6 is not usually exactly equal to 6.

Comparison of conditional multidimensional and unidimensional results. To
summarize the effects of multidimensionality on each of the evaluative indices,
distance measures were computed across the 17 91 levels between the values of

each of the conditfonal evaluative indices for the unidimensional (UD) datasets
and the multidimensional (MD) datasets for all six test lengths. Cronbach and
Gleser's (1953) formulas were used for computing a distance measure, Dz, between
two profiles and for decomposing D? into components due to mean differences,
scatter differences, and shape differences. Profiles were plots of the values
of an evaluative index for a given dataset and test length across all 17 8, lev-
els. The formulas used were:

17 2
2 = -
DUD,M‘D f_ (prD xpMD) [10]

where D%D,MD = overall squared distance between profile UD and profile MD,
prD = value of the evaluative Index for dstaset UD and 6 level p, and
xpMD = value of the evaluative {ndex for dataset MD and 6 level p.

! 2

2
2 = - EL
Dyp,up = Pup,up ~ 174 Elyp i) (11)
where DE; D = squared distance between profiles UD and MD after differences in
’

2 mean level between the two profiles are eliminated.
4 ELUD M = squared difference in mean level between profiles UD and MD, and

2! _ A2
2" _ P T4 Sppoap
Pup,mp = s ’ (12)
’ S
1"
where D%D ND = squared distance between profiles UD and MD after differences due
?

to mean level and scatter between the two profiles are eliminated

10
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s X (X XU 2)* [1.3]
uD \p’-‘ D

where SUD = gcatter for profile UD,

XUD = mean of the 17 values of the evaluative index for profile UD,
iﬁD and Syp are defined similarly, and
2

A SUD w " squared difference between scatters for profiles MD and UD.
The presence of scatters less than 1.00 for many of the datasets resulted
' in values of D?" that were larger than the values of D?' for the same profiles.
This made interpretation of the distance measures difficult, so the values of
each of the four evaluative indices at each of the 17 8 levels were multiplied
by 10. This fact should be taken into account in interpreting the magnitude of
the differences between profiles and the distance measures.

To aid in interpreting the differences in profiles due to level, scatter
and shape, the proportion of the squared distance (D?) due to each of these com-
ponents was computed using the following formulas:

2 _ Dz'
_ v ~ Pwp,mo
s Level EffectUD’MD 2 ’ [14]
! uD,MD

the proportion of D? due to differences in level between profiles UD and MD,

2! 2
N - D
- JMR,MD  UDMD
Scatter EffeCtUD,MD 02 s {15]
UD,MD
) the proportion of D? due to differences in scatter between the two profiles, and
"
DSD MD
= —'—z—'——- }
‘ Shape EffectUD’MD 2 {16]
UD,MD

the proportion of D? due to differences in shape between profiles MD and UD.

Unconditional indices. In addition to examining the blas, inaccuracy, and
RMSE conditional on 6 level, mean value3 of these indices were -~.omputed across
the 17 8 levels for each dataset and test length. Also computed for each condi-

tion was the fidelity correlation between 8 and 91. These correlations were

computed for a normally distributed sample of 630 simulees selected from the
1,700 rectangularly distributed simulees in each dataset.

11




RESULTS

Unconditional Indices

Fidelity

Table 3 shows fidelity correlations for each of the datasets based on QSAF,
1.5 OSAF, and 2.0 OSAF, as a function of test length. For the single-factor
Dataset 1, fidel.ity increased with increasing test length from .546, when 5
items were administered, to .928 at 30 items. For the 2~factor datasets (2-8)
fidelity generally decreased with increasing strength of the second factor with
two exceptions: (1) Dataset 5, which had a second factor 1/2 as strong as the
first factor, had consistently higher fidelity than Dataset 4, in which the sec-
ond factor was only 1/3 as strong as the first; and (2) Dataset 6, in which the
second factor was 2/3 the strength of the first, had consistently lower fidelity
than Dataset 7, in which the second factor was slightly stronger (3/4 of the
first). In both these cases, differences between the fidelitles decreased with
increases in test length. For all datasets, fidelity increased with increasing
test length.

For these 2-factor datasets, multidimensionality had fairly substantial
effects on fidelity. For example, at the 15-item test length fidelity was .872
for the single-factor Dataset 1, but dropped to .548 when there were two equal
factors (Dataset 8). When the second factor was only 1/4 the strength of the
first factor (Dataset 3), fidelity for a 15-item test decreased from .872 to
+784. To overcome the effect of this degree of multidimensionality, the 15-item
test of Dataset 3 would need to be doubled in length, resulting in a fidelity of
+880. For degrees of multidimensionality beyond those represented by Dataset 3,
tests would need to be well beyond 30 items in length to equal the fidelity of
the 15-item test in UD Dataset 1.

A similar pattern of results was observed for the 3-factor structures
(Datasets 9-~16), but the effects of multidimensionality on fidelity were even
stronger. In these datasets there was, again, a general decrease in fidelity
with increasing strength of the secord and third factors. Fidelity also in-
creased with test length for all datasets. In general, however, fidelities were
lower for the 3-factor datasets than for those with two factors, even when the
total variance accounted for by factors beyond the first was equal. For exam-
ple, at the 15-item length, fidelity for Dataset 13 (with factors 2 and 3 each
1/2 of the first factor in strength) was .443; when the same amount of variance
was concentrated in only the second factor (Dataset 8), fidelity was .548. Only
Dataset 9, with second and third factors each 1/8 of the first factor, attained
a sufficiently high fidelity at 30 items (.869) to approximate that of UD Data-
set 1 at 15 items (.872).

Results for the 1.5 and 2.0 OSAF datasets were similar to those for 1.0
OSAF, with a general increase in fidelity with increasing strength of the first
factor. For example, for a 15-item test based on a 2-factor structure with the
second factor 3/4 the strength of the first factor, fidelity was .628 for 1.0
OSAF (Dataset 7), .685 for 1.5 OSAF (Dataset 24), and .789 for 2.0 OSAF (Dataset
40). For the 3-factor datasets with the second and third factors each 1/3 of

12
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Table 3

Fidelity as a Function of Test Length for
Unidimensional (UD) and Multidimensional Datasets
Based on First Factors 1.0, 1.5, and 2.0 Times as

Strong as the ASVAB General Science Factor

No. of Test Length (Number of Items)
Dataset Factors 5 10 15 20 25 30
1.0 OSAF
t (Up) 1 646 .,799 .872 .903 .914 .928
2 2 592 ,762 .823 .866 .896 »909
5 2 .519 .692 .784 .833 .863 .880
4 2 461 .592 .672 .718 .765 .790
5 2 .534 .648 .711 .780 .813 .826
6 2 4504 .543 .616 .658 .677 .705
7 2 431,572 .628 .662 .694 715
8 2 .429 .510 .548 .580 .616 .631
9 3 .522 .665 .760 .821 .847 .869
10 3 423 .567 .655 .706 .737 .763
11 3 .375 .477 ,567 .633 .678 .710
12 3 340 ,467 .559 .614 .652 679
13 3 320 .386 .443 L499 .548 «584
14 3 350 .467 .529 .574 .618 645
15 3 2313 383 418 434 L4730 L490
16 3 .267 .339 .,371 .4G0 .415 .438
17 4 577 .723 .802 .847 .871 .893
1.5 OSAF
18 (UD) 1 .691 .842 ,916 .9237 .949 .955
19 2 .660 .822 .881 .912 .931 945
20 2 .587 .753 .848 .892 .914 :924
21 2 .560 .740 .828 .877 .904 2,912
22 2 .569 .737 .808 .842 .867 .878
23 2 462 .616 724 .772 .802 .812
24 2 478 .623 .685 .713 .748 .763
25 2 .387 .510 .607 .651 .675 .697
26 3 590 .740 ,816 .863 .892 911
27 3 446,596 .702 ,752 .782 .801
28 3 439 ,569 .654 .710 .755 .776
29 3 442 .578 .650 .702 .742 .759
30 3 447 554 ,637 .695 ,731 745
31 3 455 .589 .690 .732 .756 .771
32 3 415 .525 .610 .653 .68l 700
33 4 .581 .765 .858 .892 ,91§ «932
2.0 OSAF
34 (UD) 1 .733 .867 .930 .953 .961 +965
35 2 .585 .775 .888 .932 ,955 . 964
36 2 .599 .749 .850 .911 .927 937
37 2 .524 .69 .817 .860 .902 924
38 2 .604 ,7'0 .807 .853 .86% .888
39 2 547 .655 .756 .816 .843 .849
40 2 .542 .689 ,789 .813 .856 .844
41 3 .519 .,690 .804 .875 .923 . 929
%2 3 +542 647 .744 .813 .84l .868
43 3 499 .631 ,758 .831 .855 874
44 3 534 674 .777 .819 .840 857
45 4 379 ,482 . .546 .618 .664 .700

.13
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the first factor, fidelity for a 15~item test in the 1.0 OSAF data was .567

(Dataset 11), rising to .654 when factor 1 was 1.5 OSAF (Dataset 28) and to .758

with 2.0 OSAF (Dataset 43). As in the 1.0 OSAF data, a single factor beyond the

first had less effect on fidelity than did two factors equaling the strength of

the single factor, though the effect diminished substantially with the stronger |
first factor. For example, in the 1.5 OSAF structures for a 15-item test with a

second factor 2/3 of the first factor (Dataset 23), fidelity was .724 versus

+654 when there were two factors beyond the first, each comprising 1/3 of the

first factor (Dataset 28); comparable factor structures with 2.0 OSAF resulted |
in fidelities of .756 (Dataset 39) and .758 (Dataset 43).

Datasets 17, 33, and 45 provide result: based on factors derived from the
ASVAB 4-factor structure, in which factors 2, 3, and 4 accounted for 22.2%,
13.6%, and 13.5%, respectively, of 0SAF. Table 3 shows that there were rela-
tively small effects on fidelity for the 1.0 and 1.5 OSAF datasets, particularly
for tests of 20 or more items. For example, in Dataset 17 fidelity for a 25-
item test was .871 versus .914 for UD Dataset i. Comparable results for the 1.5
OSAF data were .918 (Dataset 33) and .949 (Dataset 18). 1In the 2.0 OSAF data,
however, the 4-factor ASVAB structure (Dataset 45) resulted in the lowest ob-
served fidelities for those datasets; fidelity dropped from .953 (UD Dataset 34)
to .618 for ASVAB at 20 items, and from .965 to .700 at 30 {items.

Bias, Inaccuracy, RMSE

Table 4 provides data on mean blas, inaccuracy, and RMSE for the datasets
based on 1.0 OSAF. For UD Dataset 1, blas decreased from .282 at 5 items to i
.010 at 30 items. Each of the 2-factor datasets (2-8) showed lower levels of
positive bias and higher levels of negative bias than did Dataset 1, with bias
becoming increasingly negative as the strength of the second factor increased.
Thus, in 2-factor data structures 6 underestimated 6, cn the average, as both
test length and strength of multidimensionality increased. A similar trend was
observed for most of the 3-factor datasets (9-16), with a few exceptions. 1In
these datasets bias tended to become less positive and increasingly negative for
all test lengths for Datasets 9-12, in which the sum of the variance accounted
for by the second and third factors was iess than that of the first factor. In
Dataset 13, which had second and third factors each 1/2 of the first factor,
blas was again positive for tests of 15 items or less, but this effect was
reversed for Dataset 14 (factor 2 = 2/3 of factor 1, and factor 3 = 1/3 of fac-
tor !). However, for tests of 5 or 10 i{tems, bias then again became positive
for Datasets 15 and 16, which had very strong second and third factors. There
was also a slight trend toward positive mean bias in Dataset 16. As Table 4
also shows, there was a slight effect on bias when data were generated from the
4-factor ASVAB structure (Dataset 17). For these data the ASVAB structure re-
sulted in a slight mean underestimation of 8 at test lengths of 20 to 30 items
with a mean blas of .006 at 15 items compared with .038 for Dataset 1.

Both inaccuracy and RMSE tended to increase with increasing strength of
factors beyond the first, and to decrease with increasing test length; this held
true for both the 2~ and 3-factor datasets. An exception occurred for Dataset
14 (factor 2 = 2/3 of factor 1, and factor 3 = 1/3 of factor 1) for both inaccu-
racy and RMSE. For this dataset inaccuracy and RMSE values were lower than

14
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Table 4
Mean Bias, Inaccuracy, and RMSE as a Function of Test
Length for Unidimens!>nal (UD) and Multidimensional
Datasets, Based on 'SVAB General Science Factor

No. of Test Length (Number of Items) _
Dataset Factors 5 10 15 20 25 30
Bias
1 (UD) 1 .282 .l107 .038 .024 .015 .0l0
2 2 .247 .100 .031 -.015 -.028 ~-.026
3 2 .163 .056 =004 =,026 =.042 -.051
4 2 .189 .060 -.022 =.052 -.072 -.084
5 2 .164 .065 =017 =.053 -.075 -.085
6 2 .170 .038 -.023 -.070 -.099 ~.107
) 7 2 023 =071 =.125 =136 =.147 =.153
8 2 .057 =.026 =.103 =.135 =,171 =-.190
9 3 .306 .133 .033 .012 -.020 -.028
10 3 .113 =-.007 ~-.080 -.090 =.101 ~.115
11 3 .173 .007 -.039 -.086 -.104 -.115
12 3 .128 .022 -.046 -.068 -.096 —-.111
13 3 .397 .231 .061 -.040 -.089 -.131
14 3 =-,051 =.097 =.127 =174 -.193 -.201
15 3 .139 ,059 -.060 -.122 =171 -.210
16 3 .379 .240 .101 .006 -.068 -.142
17 4 .214 .075 .006 -.028 -.03¢ -,032
Inaccuracy
1 (uD) Al .906 .587 .451 .388 .357 332
2 2 .982 J657 .S517 446 402 370
3 2 1.055 713 .570 .493 .447 413
4 2 1.251 .941 .770 .676 .617 573
5 2 1.183 .870 .715 .604 .549 .521
6 2 1.247 .948 .791 .713 .664 .638
7 2 1.208 1.012 .861 .789 .733 .698
8 2 1.387 1.112 .997 .915 .863 . 841
9 3 1.146 .781 .603 .512 .455 418
10 3 1.373 1.027 .848 .731 .661 .612
11 3 1.424 1.100 .915 .801 .725 675
12 3 1.455 1.135 .948 .837 .765 .720
13 3 1.622 1.292 1.113 1.016 .941 .888
14 3 1.549 1.244 1.062 .954 .875 .829
15 3 1.643 1.419 1.298 1.200 1.131 1.092
16 3 1.733 1.492 1.371 1.280 1.222 1.179
17 4 1.055 .734 .581 .489 .435 .399
RMSE
1 (UD) 1 1.211 .785 .603 .514 .461 425
2 2 1.328 .904 .694 .591 .521 474
. 3 2 1.417 .980 .773 .658 .587 539
4 2 1.659 1,296 1.090 .958 .863 .805
5 2 1.574 1.193 .984 .824 .757 704
6 2 1.659 1.309 1.116 1.014 .934 .884
7 2 1.734 1.407 1.214 1.120 1.050 .999
. 8 2 1.809 1.498 1.356 1.258 1.201 1.162
9 3 1.539 1.069 .844 .702 .613 547
10 3 1.800 1.401 1.198 1.043 .948 .882
11 3 1.855 1.500 1.276 1.122 1.021 .950
12 3 1.897 1.550 1.333 1.188 1.094 1.026
13 3 2,055 1.723 1.516 1.393 1.290 1.220
14 3 1.971 1.649 1.447 1,312 1.7°14 1,157
15 3 2.095 1.865 1.726 1.616 1.538 1.488
16 3 2,179 1.940 1.809 1.712 1.639 1.588
4

1.430 1,005 .797 .648 .572 .519
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those for Dataset 13, in which the amount of variance accounted for by factors 2
and 3 was the same as in Dataset 14, but the factors were of equal strength;
there was a trend for the difference between inaccuracies for the two datasets
to increase as test length increased, with Dataset 14 resulting in lower mean
inaccuracy.

As in the bias dats, small effects on inaccuracy and RMSE were observed for
the 4-factor ASVAB structure (Dataset 17). Both inaccuracy and RMSE decreased
with increasing test length. For a 15-item test, inaccuracy was .58l for Data-
set 17 versus .451 for Dataset l; corresponding RMSE values were .797 and .603.

Although not shown here, similar trends for bias, inaccuracy, and RMSE were
observed in the 1.5 and 2.0 OSAF datasets. That 18, mean bias became increas-—
ingly negative with increasing multidimensionality and test length, whereas mean
inaccuracy and RMSE tended to decrease with those variables. 1In general, howev-
er, the magnitudes of the evaluative indices were lower, indicating less effect
of multidimensionality with a stronger first factor.

Conditional Indices

Effect of Test Length

Bias. Figures la through lc show values of mean bias at each of 17 6 lev-
els. Each figure compares the mean bias level across four different test
lengths (10, 15, 20, and 25 items) for datasets derived from a 2-factor struc—
ture with the second factor 1/3 as strong as the first factor. The first factor
for the datasets in Figure la was 0SAF; in Figure 1b the first factor was 1.5
OSAF; and in Figure lc it was 2.0 OSAF.

In each of these three fizures the mean blas level generally decreases with
increasing test length. This pattern is disrupted somewhat between 6 levels of
-.80 to +.80, where the bias fluctuates around 0.0 and no test length consist-
ently shows a smaller mean blas level. Bias 1s most variable for the 10-item
test length and least variable for the 25-item test. Regardless of the strength
of the first factor, the mean bias values at 6 levels greater than .80 converge
for all four test lengths. Similar patterns of bias across test lengths were
observed for the other datasets. In general, bias was negative for 6s below the
mean and positive for 6s above the mean, although this effect was much icss pro-
nounced for the 1.5 OSAF datasets (Figure 1b) than for the 1.0 or 2.0 OSAF data-
sets (Figures la and lc).

Inaccuracy. Figure 2 compares the mean inaccuracy levels at each of four
different test lengths (10, 15, 20, and 25 items) across all 17 6 levels for
Dataset 29, in which the first factor is 1.5 OSAF, the second factor is 1/2 as
strong as the first factor, and the third factor is 1/4 as strong as "he first
factor. Inaccuracy tended to decrease with increasing test length. Inaccuracy
levels for the 10-item test length varied across 6 levels and were most constant
for the 25-{tem test. This same pattern held for the comparisons acrnss test
length of the mean inaccuracy values for each of the 45 datasets.

RMSE. Comparison of the conditional RMSE values for the same dataset

16
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Figure 1
Conditional Bias of & Estimates for Tests of 10, 15, 20, and 25 Items
for Datasets with Factor 1 of 1.0, 1.5 and 2.5 OSAF
and Factor 2 One~Third the Strength of Factor 1
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Figure 2
Conditional Inaccuracy of § Estimates for Tests of 10, 15, 20,
and 25 Items for Dataset 29
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Conditional RMSE of 6 Estimates for Tests of 10, 15, 20, and
25 Items for Dataset 4
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acrogs different test lengths ylelded the same results as for inaccuracy. An
example is shown in Figure 3 for Dataset 4. RMSE decreases with increasing test
length, and the RMSE values for the shorter test lengths (10 and 15 items) vary
more across 6 levels than those for the longer tests.

Efficiency. Comparison of the mean efficiency levels for a glven dataset
across 6 levels for a number of test lengths indicated that the efficiency lev-
els increased and followed the same pattern, as test length increased. Figure 4
provides an example of these comparisons for Dataset 29 at 10-, 15-, 20-, and
25~item test lengths. :

Since the results for all four conditional indices showed relatively sys-
tematic trends as a function of test length, the remainder of the results re-
ported are only for the 15-item test length.

Effect of Multidimensionality

Tables 5 through 8 contain values of the distance measures across 17 8 lev-
els for conditional values of each of the evaluative indices between each UD
dataset and each of the MD datasets with the same strength first factor, for
tests of 15 items in length. These tables also contain the proportions of the
distance measure due to level, scatter, and shape effects,

Bias. Table 5 shows results of the D? profile analysis for blas. For the
datasets based on OSAF (Datasets 1-17), the UD dataset (Dutaset 1) generally had
a higher mean bilas (.38) and a lower variability (scatter) of bias (2.60) than
did the MD datasets (2-17). When a second factor was added to the data (Data-
sets 2-8), D? values tended to increase with increasing strength of the second
factor; the exception to this 1s Dataset 5, in which D? values were uniformly
lower than in Dataset 4 even though the second factor in Dataset 5 was stronger.
The effect proportions show that in all these datasets the vast majority of the
differences in blas values as a result of multidimensionality was due to in-
creased scatter; in Datasets 2-8 at least 87X of the differences in blas values
from the UD dataset was due to scatter. Level effects accounted for most of the
remaining effect for most of these datasets, with the exception of Dataset 2, in
which the shape effect was slightly stronger than the level effect.

Similar results were observed for the 2-factor structure in which the first
factor was strengthened. For Datasets 19-25, based on 1.5 OSAF, overall D2 val-
ues increased regularly with increasing multidimensionality, but the absolute
values of D? were smaller than for the 1.0 OSAF data. For Datasets 35-40 a sim—
1lar but more irregular trend is evident, with smaller values of D° than for 1.0
OSAF or 1.5 OSAF, particularly for the higher strength second factors (Datasets
37-40). The effect proportions for these datasets are similar to those for the
1.0 OSAF data, though there is a tendency for multidimensionality to result in
slightly greater differences in level, with consequent reductions in the scatter
effect.

Figure 5 shows a typical result for bias with increasing multidimensional-
ity for the 1.5 OSAF data. (The values plotted in this figure and in the other
figures following are the untraasformed values, so that the means and scatters
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Figure 4
Conditional Efficiency of 6 Estimates for Tests of 10, 15, 20,
and 25 Items for Dataset 29
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Table 5
Elevation (Mesn) and Scatter of Bias (x 10) for Unidimensional (UD) and
Multidimensional Datasets, Differences Between Elevation and Scatter,

Total D? Index, D? with Elevation Removed (D?'), D? with Elevation and
Scatter Removed (Di"), and Proportion of D° Due to Level, Scatter, and Shape,
for Tests of 15 Items

Difference
Between Effect Proportion
Dataset Mean Scatter Means Scatter p? D2' D2" Level Scatter Shape
1 (UD) .38 2.60
2 31 3.76 07 -1.17 25.524 25.439 2.468 .003 «900 .097
3 -003 5011 041 -2051 39.584 36.733 20295 0072 0870 0058
4 -020 13057 058 “10098 212.407 206.674 20445 0027 .962 0012
5 -.14 9.56 52 =6.96 110,142 105.592 2.304 041 «938 021
6 -022 14013 060 -11053 2250007 218.948 20345 0027 0963 .010
7 -1019 18.04 1057 -15044 388.634 346.573 2.309 0108 0886 0006
8 -.98 17.97 1.36 =15.37 378.507 346.969 2.371 .083 910 006
9 34 5.01 04 =2.42 29,444 29,419 1.811 001 .938 062
10 - 79 12,29 1.17 -10.00 206.466 183.387 2.552 .112 +876 012
11 -e37 18.%1 «75 =15.72 354,696 345.152 2.063 .027 «967 «006
12 -043 20152 081 -17093 438.638 427.464 10990 0025 0970 0005
13 «62 22.51 =24 =19,92 535,791 534.840 2.365 002 «994 004
14 «1.23 22.27 1.60 <19.67 565.182 521.402 2.328 077 .918 004
15 -056 28055 .94 -25096 8520904 838.016 20216 0017 0980 0003
16 1003 31053 -065 ‘28094 1044031 1037.20 20441 0007 0991 0002
17 .06 3.84 32 -1.25 22.926 21.212 1.971 075 «839 . 086
18 (UD) «50 2.09
19 4l 2.66 09 =57 4,011 3.876 «640 034 807 «159
20 020 5060 030 -3052 29.204 27.642 10306 0054 0902 0045
21 .09 6.23 41 <-4.15 40.071 37.153 1.536 073 .889 .038
22 -009 9004 060 -6095 79.711 73.661 10343 0076 0907 0017
23 -39 12.62 «89 ~10.54 154.682 141.234 1.146 .087 «906 007
24 -1.03 16.58 1.53 =14.49 296,347 256.390 1.343 «135 +861 005
25 =65 17.28 1.16 ~-15.19 293,890 271.188 1.121 077 919 004
26 «39 5.07 .12 =2,98 22,341 22.108 1.252 .010 « 934 .056
- 27 .38 14.73 «12 ~12,64 192,998 192,752 1.073 .001 «993 006
28 .03 15.61 «47 -13.53 229.319 225.539 1.307 016 .978 . 006
T 29 -014 14.84 064 -12076 2060511 199.462 10187 0034 0960 0006
30 .03 17.84 «48 ~15.75 301.909 298.055 1.341 .013 .983 004
31 «50 10.25 .00 -8.17 88.514 88.514 1.019 .000 .988 012
32 -.28 18.49 «78 ~-16.40 332,691 322.277 1.379 031 «965 .004
33 041 3.89 009 "1.80 120352 12.208 10105 .012 0899 .089
34 (UD) «76 2.08
35 c64 5.34 012 -3026 23.025 22.777 10095 .011 0942 0048
36 -.02 8.11 «78 =6.03 55.720 45.257 «528 «188 .803 009
37 ~.28 10.74 1.05 ~-8.66 108.624 89.974 671 172 «822 006
38 07 9.65 70 =7.57 77.603 69.378 «604 106 .886 .008
39 29 13.08 «48 -11.00 139.271 134.398 494 .028 «968 004
40 21 11.62 «55 =9.54 109.813 104.641 «562 047 «948 005
41 68 8.38 «08 -6.30 48.958 48.835 «527 002 «987 011
42 46 9.94 «30 -7.86 71.616 70.057 « 400 .022 973 006
43 «69 13.02 «08 ~-10.94 138.069 137.966 «677 .001 «994 005
44 75 13.94 .01 ~-11.86 155.258 155.254 «503 .000 «997 .003
45 -1.58 25.93 2.35 -23.85 687.320 593.785 «463 «136 +863 001
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are 1/10 of the comparable values in Tables 5 through 8.) This figure shows the
effect of the strength of the second factor increasing from 1/3 of the first
factor (Dataset 21) to 2/3 (Dataset 23) to 1.0 (Dataset 25). Bias for the UD
dataset (Dataset 18) 1is close to zero throughout the 6 range. For the MD data-
sets blas 1s close to zero for 8 values close to 0.0, but it increases as the
levels progress toward either extr me, resulting in the increased scatter due to
increasing multidimensionality. Bias values are generally positive for € values
less than 0.0 and negative for 8 values greater than 0.0. For Dataset 21 with
the smallest second factor ('/3) bias is not substantially different from the UD
dataset, except at extreme 6 values; the major effect on bias for these datasets
seens to occur for Dataset 23 (factor 2 = 2/3), with the additional 1/3 added to
factor 2 in Dataset 25 resulting in generally little additional btias.

Results for the 3~factor datasets (9-16, 26-~32, and 41-44) are also in
Table 5. For the 1.0 OSAF data, overall D? increased regularly with increasing
strength of the second and third factors; for the 1.5 OSAF data, values of D2
were considerably lower, indicating less effect of increased strength of the
second and third factors with the stronger first factor; this trend is further
supported by Datasets 41-44 (2.0 OSAF), in which overall D? values were the low-
est for all the 3-factor datasets. For all but one of the 3-factor datasets
over 90% of the difference in bias values between the UD and MD datasets was due
to scatter (the exception being Dataset 10 with .876), with secondary effects
generally attributable to level effects.

Increasing dimensionality from two to three factors while holding constant
total proportion of variance accounted for by the factors resulted in incressed
scatter of bias in most cases. For example, Dataset 6 was a 2-factor structure ,
with the second factor 2/3 of the first, whereas in Dataset 1l both the second
and third factors were 1/3 of the first factor. For Dataset 6 overall D? was
225, whereas Dataset 11 obtained a D? value of 355; in both cases the proportion
of D? due to scatter was about .96. A similar effect was obgserved with the 1.5
OSAF data-—overall D° for Dataset 23 was 155, whereas that for Dataset 28 was
229. The 2.0 OSAF data did not, however, exhibit this effect since overall D2
for Datasets 39 and 43 were 138 and 139, respectively.

When results from the ASVAB 4-factor structure were compared to those of
the relevant UD datasets, very minor effects on bias were observed when OSAF was
used (Dataset 17) or when the first factor was increased to 1.5 its original
strength (Dataset 33). 1In both cases mean blas was lower for the ASVAB struc—
ture than for the UD structure, though the scatter of the bias was slightly
higher. The minor differences in bias for these datasets were, like the other
MD structures, primarily due to scatter (.839 for Dataset 17 and .899 for Data-
set 33). In contrast to the other MD structures, however, secondary effects
were more important for shape than for level, indicating that the ASVAB struc-—
ture changed the ordering of bias values across the 17 ¢ levels in comparison to
the datasets. However, since there were very small effects on bias due to the

ASVAB structure (overall D’ yalues of 23 and 12), the shape effects are likely
not important.

Using the ASVAB gtructure with the 2.0 OSAF data (Dataset 45) resulted in
the largest overall D? for Datasets 35-45, a result considerably different than

| . . ..:
Q ;323 .
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that observed for Datasets 17 and 33. These data indicate that bilas increased
substantially both in overall level and variability from the comparable UD data-
set, with 86% of the differences in blas due to scatter and 14%Z due to level.
Since factors 2-4 were the same in all three ASVAB datasets, this difference can
be attributed only to the increased absolute strength of the first factor in
Dataset 45.

Inaccuracy. Table 6 contains the distaace measures computed between the
inaccuracy profiles of the UD datasets and each of the MD datagets with the same
strength first factor. For the 2-factor structures overall, D? generally in-
creases with increasing strength of the second factor in both the datasets based
on 1.0 OSAF (2-8) and those based on 1.5 034F {12~25), with a similar but more
irregular trend in the datasets based on 2.0 0SAF. As for the bias criterion,
the value of D? tends to decrease as the strength of the first factor increa-
ses-—even though the relative strength of the second factor is the same--indi-
cating less effect on inaccuracy as the strength of the first factor increases.
The effect proportions for these data show that differences in inaccuracy values
were primarily the result of level effects that tended to increase with in-
creased strength of the second factor. This increasing level effect occurred at
the expense primarily of the scatter effect which, with a few exceptions, tended
to decrease with increasing strength of the second factor. The only exception
to the predominance of the level effect occurred when the second factor was 1/8
as strong as the first factor in Dataset 2, Iin which case the scatter effect was
.547 and the level effect was .382; in the comparable datasets (19 and 35) with
similar strength second factors but stronger first factors, the scatter effect
was also relatively large. However, in all three of these datasets, D? was rel-
atively small, indicating little effect on inaccuracy with a weak second factor.

A similar pattern was observed for the 3-factor structures (Datasets 9-16,
26-32, and 41-44). D? tended to increase with increasing strength of the second
and third factors, although the trend was more irregular for the 1.5 and 2.0
OSAF data. In all cases level accounted for a minimum of 86X of the squared
difference between inaccuracy values for the UD and MD datasets. There was also
a marked tendency for the effect of the second and third factors to diminish
substantially as the first factor increased in strength. For example, in Data-
set 1l based on, 1.0 OSAF and second and third factors each 1/3 as strong as the
first factor, D? was 382 with 96% due to level; in Dataset 28 based on 1 5 OSAF
D? was 226 with 98% due to level, and in Dataset 43 based on 2.0 OSAF D? wos 141
with 88%Z due to level.

When the number of factors was increased from 2 to 3 while holding_ constant
the proportion of variance accounted for by factors beyond the first, D° tended
to increase, indicating a greater effect on inaccuracy for a larger number of
factors. For example, in the 1.0 OSAF data, D° for Dataset 5 (2 factors, second
factor 1/2 of first factor) was 130, whereas in Dataset 10 (3 factors, second
and third factors each 1/4 of first factor) D? was 288; similar effects were
observed in the 1.5 OSAF data for Datasets 22 versus 27 (D2 = 9] vg. 275) and in
the 2.0 OSAF data for Datasets 38 and 42 (D2 = 71 vs, 98). Figure 6 illustrates
the typical level effect found for inaccuracy within the 1.0 OSA¥ data. Dataset
3 with a weak (1/4) second facter results in inaccuracy values close to UD Data-
set 1, whereas inaccuracy increases for Dataset 10 with two factors each 1/4 of
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Table 6 ‘
Elevation (Mean) and Scatter of Inaccuracy (x 10) for Unidimensiunal (UD) and
Hultidimensional Datasets, Differences Betueen Elevation and Scatter,
Total D? Index D? with Elevation Removed (D ", p? with Elevation and
Scatter Removed (D*''), and Proportion of D? Due to Level, Scatter, and Shape,
for Tests of 15 Items

Difference
Between . Effect Propostion
Dataset Mean Scatter Means Scatter D? p%! p2r Level Scatter Shape
1 (UD) 4.52 2.97
2 5.17 2,95 -.65 .02 18.998 11.735 1.336 .382 .547 .070
3 5.71 3.12 ~1.19 ~.15 26.202 2.245 .,240 .914 .077 .009
4 7.70 3.55 -3.19 -.57 190.049 17.495 1.628 ,908 .083 .009
5 7.17 3.84 -2.65 -.86 129.530 10.312 .839 .920 .073 .006
6 7.91 3,19 -3.,39 -.21 213.406 17.736 1.868 .917 .074 .009
8 9.98 5.11 -5.46 -2.i3 539.101 31.407 1.768 .942 .055 .003
9 6.03 2,92 -1.51 .06 45,036 6.235 .719 .862 .122 .016
10 8.48 4,95 -3.96 -1.97 287.725 20.615 1.138 ,928 .068 .004
11 9.16 4.67 -4.64 -1.70 381.703 15.607 .916 .959 .038 .002
12 9.48 5.67 -4.96 -2.70 456.103 38.004 1.822 .917 .079 .004
13 11.13 5.87 ~6.61 -2.89 766.013 22.639 .818 .970 .028 .00l
14 10.62 6.32 -6.10 =-3.35 698.322 65.996 2.914 .905 .090 .004
15 12.99 5,29 -8.47 -2.31 1256.73 37.017 2.014 ,971 .028 .002
16 13.71 601 -9.19 -3,03 1459.01 22,300 .733 .985 .015 .00l
17 5.81 2,47 -1.29 .51 36.439 8.198 1.083 .775 .195 .030

18 (UD)  3.47 2.24
19 3.92 2.25 -.46 -.00 5.919  2.375 471,599 .322 ,080
20 4.65 2,34 -1.18 =10 26.112 2.344 445 .910 .073 .017
21 4.69 2.48 ~1.22 -.24 29.550 4.181 .741 .859 .116 .025
22 5.67 3.61 -2.20 -1.36 91.193 8.891 .868 .903 .088 .0l0
23 6.52 4.84 .05 -2.60 176.205 18.184 1.054 .897 .097 .006
24 7.37 6.08 -3.90 -3.84 286.368 27.907 .964 .,903 .094 .003
25 8.30 5.40 ~4.84 -3.16 424.959 27.536 1.450 .,935 .061 .003
26 4.92 3.41  -1.45 -1.17  39.773 3.970 .339 ,900 .091 .009
27 7.36 5.70  -3.89 -3.46 275.196 17.818 .458 .935 .063 .002
28 7.79 3.38  -4.32 -1.13 325.967 8.300 .925 .975 .023 .003
29 7.49 4,26 ~4.02 -2.02 284.848 9.615 .579 .,966 .032 .002
30 8.28 4.64 —~4.81 -2.40 413.759 20.685 1.436 .950 .047  .003
31 6.87 3.08 -3.40 -.83 203.233 6.271 .808 .969 .027 .004
32 8.64 3.89 -5.18 -1.65 474.291 18.741 1.836 .960 .036 .004
33 4.35 3.06 -.88 -~.82 17.426 4.166 .509 .76l .210 .029
34 (UD) 2.78 3.46
35 3.59 3.62 -.80 -~.16 19.489 8.578 .683 .560 .405 .035
36 4.20 3.76  =-1.42 -=,30 41.527 7.347 ,558 .823 .163 .013
37 4.80 4,32 -2.02 -.86 89.533 20.142 1.298 .775 .210 .0Ol4
38 4.67 3.50 -1.88 -.04 70.768 10.465 .864 .852 .136 .012
39 5.70 4.25 -2.92 -.,79 158.053 13.192 .855 .917 .078 .005
40 5.42 4.70  =2.64 <-1.24 127.626 9.232 474 ,928 .069 .004
41 4.73 5.21  =1.95 ~1.75 74.287 9.840 .377 .868 .127 .005
42 5.1% 3.10 =-2.33 <36 97.648 5.296 .482 ,946 .049 .003
43 5.48 6.02 -2,70 -2.56 140.984 ‘7.415 ,522 .876 .120 .004
44 5.91 5.85 -3.13 -2.39 180.958 14.843 .450 .918 .080 .002
45 8.94 9,07 ~6.15 =5.61 736.603 92.771 1.953 .874 .123 .003
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the first factor, and increases again in Dataset 13 as factors 2 and 3 are again
increased to 1/2 of the first factor.

Figure 6
Conditional Inaccuracy of 6 Estimates for Datasets 1, 3, 10, and 13
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The ASVAB factor structure (Datasets 17, 33, and 45) had slightly greater
effects on overall D? for inaccuracy (Table 6) than it did for bias (Table 5).
Similar to the bias data, however, the ASVAB structure regulted in lowest D% for
the 1.5 OSAF data (Dataset 33) and a very high value of D? in the 2.0 OSAF data
(Dataset 45). For all three datasets D was primarily attributable to differ-
ences In level of conditional inaccuracy, with a secondary effect due to scatter
of the imaccuracy values.

RMSE. The results for RMSE, shown in Table 7, have some similarity to
those for imaccuracy. That is, for both the <~ and 3-facter structures D? gen-—
erally increased as the strength of factors beyond the first increased. 1In
addition, the magnitude of D? decreased with increasing strength of the first
factor, indicating that the effect of factors beyond the first factor or RMSE
was less with a stronger {irst factor, even though succeeding factors were pro-
portionally as strong. In contrast to the inaccuracy results, however, for the
2-factor structures (Datasets 2-8, 19-25, 35-40), MD datasets resulted in RMSE
values that were more variable than the UD datasets, as indicated by D“ scatter
proportions in the range of .10 to .20 for most of the 1.0 and 1.5 OSAF struc-
tures, and above .20 for many of the 2.0 OSAF datasets (35 to 38). With only
one exception (Dataset 2), however, the predominant effect of multidimensional-
ity was to increase the level of RMSE in all datasets, with the greatest level
effects observed in the 1.5 OSAF data.
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Table 7
Elevation (Mean) and Scatter of RMSE (x 10) for Unidimensional (UD) and
Hultidimensional Datasets, Differences Between Elevation and Scatter,
Total D? Index, D? with Elevation Removed (D2'), D? with Elevation and
Scatter Removed (D?''), and Proportion of D? Due to Level, Scatter, and Shape,
for Tests of 15 Items

Difference
Between 2 Effect Proportion
Dataset Mean Scatter Means Scatter D2 D2 D“''  Level Scatter Shape

1 (Up) 5.92 5.04
2 6.85 4.74 -.93 .29  52.258 37.554 1.568 .281 .689 .,030
3 7.63 5.06 -1.71 =-.02 57.435 7.568 ,297 .868 .127 .00S
4 10.79 %43  -4.87 -1.39 460.096 56.266 1.677 .878 .11%  .004
5 9.74 6.68 -3.82 -1.64 284.922 36,997 1.020 .870 .126 .004
6 11.05 6.57 =5.13 -1.53 3508.037 60.475 1.755 .88l .116 .003
7 11.92 9.60 -6.00 -4.56 728.676 116.171 1.972 .841 .157 .003
8 13.43 8.02 ~-7.51 -2.98 1038.69 78.628 1.727 .924 .074 .002
9 8.36 5.07 =-2.44 -.03 117.990 16.686 .653 .859 .136 .006
10 11.82 8.00 =-5.91 -2.96 642.629 49.761 1.018 .923 .076 .002
11 12.64 7.41  -6.72 -2.38 811.771 43.702 1.019 .946 .053 .00l

12 13.12 9.74 -7.21 -4.71 994.308 111.601 1.822 .888 .110 ,002
13 15.02 8.76 =-9.10 -3.72 1467.72 59.222 1.029 .960 .040 .00l
14 14.29 9.25 -8.37 -4.21 1326.61 135.073 2.518 .898 .100 .002
15 17.16 8.18 -11.24 -3.14 2229.70 80.075 1.704 .964 .035 .00l
16 17.95 9.31 =-12.03 =-4.27 2525.26 63.754 .971 .975 .025 .000
17 7.90 4.31 ~-1.98 .72 86,201 19.562 .876 .773 ,217 .0l0
18 (UD) 4.70 3.92
19 5.39 4.53 -69 -.61 13.904 5.817 .306 .582 .396 .022
20 6.79 5.29 -2.08 -1.37 84.610 10.949 .438 .871 .124 .005
21 6.84 5.32  -2.14 ~1.41 97.021 19.364 .834 ,800 .19l -009
22 8.32 7.85 =3.62 =-3.93 271.126 48.945 1.089 .819 .177 .004
23 9.68 8.32 ~4.98 -4.41 479.630 58.372 1.195 .678 .119 .002
24 10.80 9.70 -6.10 =-5.78 702.920 71.289 .995 .899 .l00 .00l
25 11.94 8.62 ~7,23 -4.70 962.968 73,388 1.521 .924 .075 .002
26 7.15 6.21 -2.44 =-2.29 112.695 11.18%1 .244 .901 .097 .002
27 10.80 9.14  -6.09 =-5.22 678.314 46.987 .551 .931 .068 .00l
28 11.28 6.41 -6.58 -2.50 770.580 34.305 1.118 .955 .043 .00l
29 10.99 6.89 -6.28 -2.97 694.135 22.728 .515 .967 .032 .00l
30 12.21 8.97 ~7.50 -5.05 1025.00 68.198 1.215 .933 .065 .00l
31 9.97 5.31  ~5.27 -1.39 487.982 15.980 .676 .567 .03l .001
32 12.65 7.08 ~7.95 -3.i6 1122.39 49.268 1.417 .956 .043 .00l
33 6.29 6.25 ~-1.59 -2.33 55.572 12.693 .297 .772 .223  .005
34 (UD)  4.09 6.65

35 5.h5 7.47 ~-1.56 -.81 78.437 37.022 .732 .528 .463  .009
36 6.70 7.21  =2.62 -.56 163.897 47.642 .987 .709 .285 .006
37 7.79 8.43 -3.70 -1.78 322.126 89.233 1.534 ,723 .272  .005
38 7.61 8.06 -3.52 -1.41 276.660 65.480 1,184 .763 .232 .004
39 9.07 8.79 -4.98 -2.14 485.606 64.437 1.024 .867 .131  .002

8.70  -4.59 -2.04 405.497 47.229 . .744 .884 .115 .002
41 7.75 9.10 -3.66 -2.44 264.622 37,109 -.515 .860 .138 .002
42 8.32 6.12 -4.23 +53 323.970 20.145 .488 .938 .06l .002

43 8.97 10.26 -4.89 -3.61 462.204 56.519 .638 .878 .121 .00l
44 9.48 10,08 -5.39 -3.43 546.413 53.325 .620 .902 .096 .00l
45 13.12 12,92 -9.03 -6.27 1585.95 200.102 1.871 .874 .125 .001

|
L 40 8.68
|
|
|
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Figure 7 shows a typical example of the RMSE results. This figure displays
RMSE values for the 1.5 OSAF UD dataset (18) and MD Datasets 22, 24, and 25, in
which the strength of the second factor increased respectively from 1/2 to 3/4
to 1.0 of the first factor. As can be seen, values of RMSE increased with
increasing strength of the second factor, with only minor changes in their vari-

ability.
Figure 7
Conditional RMSE of @ Estimates for Datasets 18, 22, 23, and 25
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The patterns of RMSE results for the ASVAB data structures were similar to

those for 1naccuracy. Lowest D’ was observed for the 1.5 OSAF data (Dataset
33), whereas highest occurred for 2.0 OSAF. Even though the ASVAB structure
included four factors, D? values for the 1.0 and 1.5 OSAF structures were in the
range of those observed for 2-factor structures with second factors 1/8 to 1/4

* those of the first factor (e.g., Datasets 2, 3, 19, 20). The ASVAB structure
tended to result in D? values with a higher scatter effect for the 1.0 and 1.5
OSAF datasets, in comparison to most of the cther MD datasets, indicating more
variability in RMSE values as a function of 6 levels than was evident in the

’ corresponding UD datasets.

Efficiencx._-D2 values for efficlency are in Table 8. With the exception
of Dataset 2, the predominant difference in efficiency between the MD and UD
datasets in the 2-factor data for 1.0 OSAF (Datasets 2-8) and 1.5 OSAF (Datasets
2-8 and Datasets 19-25) was due to level; MD structures resulted in fairly con-
stant levels of lower efficilency in compar.son to UD structures. In the 1.0
OSAF datasets the scatter/variability of observed efficiency values tended to
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Table 8
Elevation (Mean) and Scatter of Efficiency (x 10) for
Multidimensional Datasets, Differences Between Elf
Total D> Index, D’ with Elevation Removed (p%'), D
Scatter Removed (D?''), and Proportion of D? Due to Lev
for Tests of 15 Items

Unidimensional (UD) and
vation and Scatter,
with Elevation and
el, Scatter, and Shape,

Dif ference
Between Effect Proportion
Dataset Mean Scatter Means Scatter D? p?! p2e Level Scatter Shape
1 (uD) 8.18 1.96
2 7092 1098 026 "'002 20 620 101081 0383 01035 .[019 01[06
3 7.75 1.63 42 33 4,080 1.031 «289 o 747 «182 071
4 7.08 1.33 1.09 «63 22,520 2.169 «682 «904 066 .030
5 7.31 1.37 «86 «59 13.890 1.179 311 915 «062 022
6 7.05 1.16 1.12 «80 23,450 1.991 «597 915 «059 .025
7 6.79 1.56 1.39 40  37.060 4.298 1.355 «884 .079 «037
8 6.65 1.32 1.53 «64 42,840 3,075 1.033 .928 048 024
9 7.53 2.03 «65 =.08 8.060 « 942 «235 +883 .088 .029
10 607[0 2022 1010[0 ".27 370 1[00 20119 .[071 09[03 0010[0 .013
11 6.51 2007 1067 -011 [080680 10235 0302 0975 0019 0006
12 6.46 2.42 1.71 ~.47 53,550 3.738 o742 «930 «056 014
13 6.15 2.24 2,03 ~-.28 72.690 2.675 «593 +963 .029 . 008
14 6.27 1.84 1.91 .11 68,460 6.709 1.857 «902 071 027
15 5.91 1.08 2,27 .88  §9.980 2.335 741 974 .018 . 008
16 5.64 2.12 2,54 =,16 113.460 3.681 880 «968 025 .008
17 7.71 1.55 47 40 4,680 «915 247 +804 «143 .053
18 (UD) 8.11 l.44
19 7.92 1.28 «19 16 1.250 «+609 «316 512 «235 «253
20 7.46 1.42 «65 02 8.110 «862 421 «89% 054 052
21 7.52 1.56 59 =12 7.010 1.009 44l «856 081 «063
22 7.15 1.58 96 -,14 17.860 2.039 «886 «886 «065 050
23 6.81 2012 1030 "067 310390 20660 0723 0915 0062 0023
24 6.45 3.01 1.66 -~1.57 55,270 8.159 1.317 «852 124 024
25 6.28 1.32 1.84 .12 60.100 2.839 1.481 «953 .023 025
26 7.35 1.79 «76 =35 11.390 1.601 571 «859 090 «050
27 6.31 3.86 1.81 -=2.42 65,930 10.489 835 «841 « 146 .013
28 6.14 3.06 1.98 ~-1.62 72.320 5.911 « 747 918 071 .010
29 6.26 3.61 1.85 -2.16 66,580 8.582 «750 871 .118 011
31 6.66 2.29 1.45 -.85 37.580 1.982 «383 «947 043 .010
32 6.18 1.92 1.94 =,48 65.990 2.319 754 «965 024 2011
33 7.62 1.81 49 =37 5.690 1.638 «573 712 .187 .101
34 (UD) 7.80 2.06
35 7.29 6.49 51 =4,42 39.220 34.869 1.143 o111 «860 .029
36 7.04 6.15 «76 ~4,08 43.320 33.379 1.318 2229 « 740 .030
37 6.82 5.74 «98 -3.68 47.000 30.791 1.458 «345 «624 .031
38 6.90 6.49 «50 ~-4.42 50.650 36.880 1.294 272 «703 «026
39 6.46 5.56 1.34 -3.50 57.280 26.701 1.258 534 b4 022
40 - 6,59 6.17 1.21 =4.,11 58.540 33.578 1,311 426 «551 022
41 6.76 6.57 1.04 ~4,50 53.820 35.599 1.130 «339 «540 .021
42 . 6.66 6.49 l.14 -4.,43 56,380 34.241 1,091 «393 .588 .019
43 6.61 6.79 1.19 ~4.72  63.490 39.249 1.210 .382 «599 .019
44 6.42 6.65 1.38 -4.58 69.750 37.265 1.184 466 517 017
45 5.46 4,89 2,34 -2,83 122,740 29.561 2.135 «759 223 .017
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decrease with increasing strangth of the second factor, with a somewhat more
irregular trend observed for the comparable 1.5 OSAF datasets. For the 3-factor
structures in the 1.0 and 1.5 OSAF datasets (Datasets 9-16 and 26-32), the pre-
dominant result was an overall reduction of efficiency values as the strength of
the second and third factors increased. The level effect for these datasets
tended to be in the high .80s and low .90s with a minor seccndary effect due to
scatter. In both the 1.0 and 1.5 OSAF structures, an increase from 2 to 3 fac-
tors while maintaining the same proportion of variapce in the factors beyond the
first led to decreases in efficlency, as shown by D° values of 23 for Dataset 6
(second factor 2/3 of the first) and 44 for Dataset 11 (second and third factors
each 1/3 of the first).

Figure 8 shows the typical pattern of results for the 1.0 and 1.5 OSAF
data. The UD data structure (Dataset 18) shows a fairly flat and high pattern
of efficiency with a mean of .811. When a second factor 1/4 the strength of the
first factor is added in Dataset 20, mean efficlency drops to .75 with little
change in variability or shape. Datasets 27 and 30 show strong effects on effi-
clency through most of the 8 range when two factors are added to the first.
However, the strength of the second and third factors seems to have little
effect on efficiency since factors 2 and 3 in Dataset 27 were each 1/4 of the
first factor, whereas these factors each accounted for 1/2 the variance of the
first factor in Dataset 30. The trend observed in Figure 8 for Datasets 27 and
30 appeared for most of the efficliency data--there was a tendency for strong
second and third factor structures to have a greater effect for lower 6 levels
than for higher 6 levels. This asymmetry was not evident in the bias, inaccura-
cy, or RMSE results.

Figure 8
Conditional Efficiency of 6 Estimates for Datasets 18, 20, 27, and 30
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A different pattern of results emerged for the 2.0 OSAF data. For the UD
Dataset 34, mean efficiency (.78) was slightly lower and its scatter higher than
for UD Datasets 1 and 18. As the strength of the second and third factors in-
creased, overall D? values increased to about the same levels as those observed
in comparable 1.0 and 1.5 OSAF data, indicating similar overall reductions in
efficiency; for example, D? in Dataset 40 (with a second factor 3/4 of the first
factor) was 59, whereas the same structure in the 1.5 OSAF data (Dataset 24)
resulted in'a D2 of 55. The difference in the 2.0 OSAF data versus the 1.5 and
1.0 OSAF was in the pattern of the efficiency results. Whereas in the latter
data structures the predominant D2 effect was for level, in the 2.0 OSAF data
the majority of the change in efficiency due to multidimensionality was due to
scatter, with proportions ranging from .86 for Dataset 35 to .44 for Dataset 39.

Figure 9 displays the typical pattern of results for the 2.0 OSAF data
structures. UD Dataset 34 has the flattest and generally highest efficiency
levels of the datasets plotted. The remainder of the datasets resulted in simi-
lar patterns of highly variable efficiency values, all following a similar pat-
tern and differing little, even though Dataset 36 had only two factors wit“ the
second factor only 1/4 the strength of the first, whereas Datasets 42 and -+
were 3-factor structures with the second and third factors combined accounting
for 1/2 and 3/4 the variance of the first factor, respectively. For all three
of these datasets, efficiency values for the MD structures exceeded those of the
UD structure for 6 values in the range of -1.6 to -2.0 and above about 2.8.

Figure 9
Conditional Efficlency of 6 Estimates for Datasets 34, 36, 42, and 44
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Results for the ASVAB structures show small reductions in mean efficlency
from .82 to .77 in the 1.0 OSAF data (Datasets 1 vs. 17), with a reduction in
scatter; a similar small mean effect in the 1.5 OSAF data (.81 vs. .76); and a
slight increase in scatter for Datasets 18 versus 33. When the first factor was
increased to twice its original strength, addition of the three ASVAB factors
resulted in a substantial decrease in mean efficiency and in a substantial
increase in the variability of efficlency values; in Dataset 45 (the ASVAB
structure) mean efficlency was .55 with scatter of .49, in comparison to values
of 78 and .21 for the UD 2.0 OSAF structure (Dataset 34). However, for all
three comparisons, level effects accounted for more than 70% of the differences
between conditional efficiency levels for the ASVAB data and the comparable UD
datasets.

CONCLUS IONS

As the overall degree of multidimensionality (as measured by the sum of the
eigenvalues for each factor) in the generated item responses increased, the es-
timated ® values at each of the seventeen O levels evaluated deviated further
from the true (first factor) 6 values. This effect was evident in the compari-
sons of overall bias, inaccuracy, and root mean square (RMSE) values for data-
sets with differing degreeg of multidimensionality, and in all the conditional
indices. These comparisons showed increasing levels of each of these evaluative
indices as the multidimensionality of the underlying factor structure increased.
The effect was also evident in the decreased efficlencies of datasets when com-—
pared to datasets with underlying factor structures that were more unidimension-—
al. Individual 6 estimates also ordered individuals differently from the true
values, as reflected in the fidelity correlations. The pattern of results,
therefore, suggests that maximum information adaptive testing is sensitive to
changes in the dimensionality of the responses.

While all degrees of multidimensionality had effects on all the evaluative

indices, effects were generally a function of the number of items administered.
Thus, for the overall indices in all multidimensional datasets, fidelities in-
creased with increasing test length, and ilnaccuracy and RMSE decreased, while
overall bias tended to change from fairly high positive values for short test
lengths to low negative values for the majority of multidimensional structures.
For the conditional indices, very simllar patterns of results were observed for

. different test lengths, with level effects (as opposed to scatter or shape
effects) predominant for all but the bilas index. Even for conditional bias,
however, test length effects were roughly proportional for a given 8 level.
Consequently, while maximum information adaptive testing is affected by devia-

' tions from unidimensionality, the data suggest that in many cases, at least for
relatively small degrees of multidimensionality, the effects of multidimension-
ality can be overcome simply by increasing test length. For example, the ASVAB
factor structure resulted in a fidelity of .802 for a 15-item test compared to
.872 for the UD case. When the multidimensional ASVAB structure was increased
to 25 items in length, the fidelity of .871 was essentially the same as that of
the 15-item wnidimensional test. The same pattern was observed when the first
factor of the ASVAB structure was strengthened by 50%.

31.




The overall indices showed, in general, that increasing test length to
twice the length of the multidimensional tests will overcome the effects of mul-
tidimensionality for multidimensional structures with one or two factors beyond
the first that account for up to one-fourth the variance of the first factor.
This finding held regardless of the strength of the first factor. Since a simi-
lar result was observed for the ASVAB structure (in which factors 2, 3, and 4
accounted for 22X, 13%, and 13% of the first factor, respectively) in the 1.0
and 1.5 OSAF data, the results suggest that the effects on maximum information
adaptive testing of multidimensional factor structures in which up to one-third
of the variance of the first factor appears in second and third factors, can be
overcome by doubling adaptive test length. For degrees of multidimensionality
beyond these levels, however, adaptive test lengths would need to be increased
well beyond double to cvercone the effects of multidimensionality. This conclu-
sion must be qualified, however, when bias of the 6 estimates ig of concern,
since the degree of bias differed at different 6 levels.

There was some evidence to suggest that the number of factors (2 vs. 3),
and not simply the overall strength of the underlying factor structure, affected
® estimates. For example, a single factor beyond the first had less effect on
fidelity than did two factors that accounted for the same amount of variance.

In addition, there was more scatter of conditional bias with three factors than
with two, even though the proportion of variance in the second and third factors
was equal in the two structures. Thus, the more complex factor structures
seemed to affect the 6 estimates more than the simpler structures. This find-
ing, however, did not appear to extend to the 4-factor ASVAB structures.

Several factors affect the generality of the conclusions Arvawn from this
research. First, the results are limited to the particular multidimensional
model used to generate the multidimensional response vectors. Use of other mod-
els, such as those reviewed by Reckase and McKinley (1985), may yleld different
results. The results are also limited to maximum information adaptive testing
with maximum 1likelihood scoring. Third, different factor structures might re-
sult in different findings, since cnly one basic first factor was used in this
study. Thus, the study should be replicated varying these factors to further
evaluate the robustness of adaptive testing to deviations from the unidimension~-
al item response theory model used to select and to score test items.
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